Folhdations.
ol Compyting
Series,

Equational Logic as a
Programming Language

Michaelld @ Baonnell

EherVIliE Bress

THEIMITIPress
Vassachiisettsiinstittiteroffliechinology,
CambridgeMassachusetts 02142

lilogicrastalProy
anguage!
byaichiaeINQDonnel:

HIHSIboekIprovidesialeomprehensive
deseriptiontoitherthecretical foundas
tionsHdESignyandimplementationioftan
innovativeNogiciprogramminaianguage
inAWhichicompuitationsiarelproducedidis
rectiysfromrequationalidefinitionss Like
LISPRandiBrologithielequationallpros
gramminglanguagetisibasedionithel
conceptithattaiprogrammenshouldigive:
aimathematicalldesenptiontofithefresult
offaicomputationirathienthanralseres of
commandsitoldirectialcomputations
UnlikellSPandiRrologhowevern the
equstionaliprogramminglanguage

stuctiysfollowsithermtiesiofiequational

logieaprovidingipowerfuliiprogramming

techniguesinoravailabletintconventionall

languagess
= 5

(HlogiciasalF
Langliagercoversithetentirerspectitimiof
elghtWearsttheoreticallandiapplied
workionithieldesigntandithelimplemens
iationiofithielequiationaliogiciprograms
mingilangliagesSeparatelchaptersicoven
thedntuitivetlogicallsemanticsiofithe
(Enguagelthelnoweriliifprogramming
itechniguesistppoertedibyAittandithein
connections\olprocediiralitecunigues)
stchiasicorotitinesthelniethodsiised
tolnroducerathighlyAflexibleNmplemens
tationfofithellangtiagewithivenyalittie:
manpoweranadithetpotentialiffomimples
mentatiogtoniparalleliicompltersy

MichaellIR@Bonnelllis’AssociatelRro-
fessonoffCompliterSeienceratiine
dahnsiHepKinsiUniversity,onileave
fromiRurduelUnivVersityrEqational
ilagiclas alRrogramming languagens
incltidediinithelFodndationsioftComputs
ingiSeniesyeditedibyANichaclGarey:
ihelseriestalsolinelidesiComplexity /s
ISUesyniVESIE @ptimalttayouts for the
ShtiftlesExchangelGraphiand Other Net-
works,\bysESThomsonileightont

026251602851
OPEEH

EQUATIONAL LOGIC
as a

PROGRAMMING LANGUAGE

Michael J. O’Donnell

The MIT Press
Cambridge, Massachusetts

London, England

Publisher’s Note

This format is intended to reduce the cost of publishing certain works in book form
and to shorten the gap between editorial preparation and final publication.

Detailed editing and composition have been avoided by photographing the text of
this book directly from the author’s prepared copy.

Second printing, 1986
© 1985 by The Massachusetts Institute of Technology
All rights reserved. No part of this book may be reproduced in any form by any

electronic or mechanical means (inclu(}ing photocopying, recording, or information
storage and retrieval) without permission in writing from the publisher.

This book was composed using the UNIX tools egn, troff, and ms, set on the APS-
5 phototypesetter, and printed and bound in the United States of America.

Library of Congress Cataloging in Publication Data
O'Donnell, Michael J., 1952-
Equational logic as a programming language.

(MIT Press series in the foundations of computing)
Bibliography: p.
Includes index.
1. Programming languages (Electronic computers)
2. Logic, Symbolic and mathematical. 3. Equations,
Theory of. I. Title. I Series.
QA76.7.036 1985 001.64'24 84-29507
ISBN 0-262-15028-X

To Julie and Benjamin &# /j Mﬁ 7/

Table of Contents

Preface
1. Introduction
2. Using the Equation Interpreter
Under UNIX (ep and ei)
3. Presenting Equations to the Equation Interpreter
The Syntax of Terms (loadsyntax)
1. Standmath: Standard Mathematical Notation -- 13
2. LISP.M: Extended LISP Notation -- 14
3. Lambda: A Lambda Calculus Notation -- 15
4. Inner Syntaxes (for the advanced user with a large problem) -- 17
5. Restrictions on Equations
6. Predefined Classes of Symbols
1. integer_numerals -- 22
2. truth_values -- 22
3. characters -- 22

4. atomic_symbols -- 22

7. Predefined Classes of Equations
1. Functions on atomic_symbols -- 25
2. Integer Functions -- 25
3. Character Functions -- 25
Syntactic Qualifications on Variables
Miscellaneous Examples
1. List Reversal -- 30
2. Huffman Codes -- 31

13

20
22

24

27
30

3.
4.
5.
6.
7.
8.
9.

Contents

Quicksort -- 33

Toy Theorem Prover -- 34

An Unusual Adder -- 39
Arbitrary-Precision Integer Operations -- 41
Exact Addition of Real Numbers -- 46
Polynomial Addition -- 51

The Combinator Calculus -- 54

10. Beta Reduction in the Lambda Calculus -- 55

11. Lucid -- 62
10. Errors, Failures, and Diagnostic Aids 68

1.
2
3.
4.

6.
7.

Context-Free Syntactic Errors and Failures -- 69
Context-Sensitive Syntactic Errors and Failures -- 69
Semantic Errors and Failures -- 70

Producing a Lexicon to Detect Inappropriate
Uses of Symbols (el) -- 71

. Producing a Graphic Display of Equations

In Tree Form (es) -- 71

Trace Output (et) -- 73

Miscellaneous Restrictions -- 74

11. History of the Equation Interpreter Project 75

12. Low-Level Programming Techniques 78

1.

2.
3.

A Disciplined Programming Style Based
on Constructor Functions -- 78

Simulation of LISP Conditionals -- 84

Two Approaches to Errors and Exceptional Conditions -- 87

Contents

4. Repairing Overlaps and Nonsequential Constructs -- 90
13. Use of Equations for Syntactic Manipulations 98
1. An Improved Notation for Context-Free Grammars -- 100
2. Terms Representing the Syntax of Terms -- 112
3. Example: Type-Checking in a Term Language -- 115
14. Modular Construction of Equational Definitions 124
15. High-Level Programming Techniques 132
1. Concurrency -- 132
2. Nondeterminism vs. Indeterminacy -- 134
3. Dataflow -- 137
4. Dynamic Programming -- 145
16. Implementing Efficient Data Structures
in Equational Programs 151
1. Lists -- 151
2. Arrays -- 157
3. Search Trees and Tables -- 161
17. Sequential and Parallel Equational Computations 177
1. Term Reduction Systems -- 177
2. Sequentiality -- 180
3. Left-Sequentiality -- 183

18. Crucial Algorithms and Data Structures
for Processing Equations 187
1. Representing Expressions -- 187
2. Pattern Matching and Sequencing -- 191
1. Bottom-Up Pattern Matching -- 194

3.

4.

2. Top-Down Pattern Matching -- 199
3. Flattened Pattern Matching -- 205

Selecting Reductions in Nonsequential
Systems of Equations -- 210

Performing a Reduction Step -- 212

19. Toward a Universal Equational Machine Language

1.

2
3.
4
5.

7.
8.

Reduction Systems -- 223

. The Combinator Calculus, With Variants -- 226

Simulation of One Reduction System by Another -- 235
The Relative Powers of S-K, S-K-D, and S-K-A -- 244

. The S-K Combinator Calculus Simulates All Simply

Strongly Sequential Term Reduction Systems -- 248

. The S-K-D Combinator Calculus Simulates All Regular

Term Reduction Systems -- 252

The Power of the Lambda Calculus -- 256
Unsolved Problems -- 260

20. Implementation of the Equation Interpreter

1. Basic Structure of the Implementation -- 262

2. A Format for Abstract Symbolic Information -- 266

3. Syntactic Processors and Their Input/Qutput Forms -- 270
Bibliography

Index

Contents

220

262

277
285

Series Foreword

Theoretical computer science has now undergone several decades of develop-
ment. The “classical” topics of automata theory, formal languages, and computa-
tional complexity have become firmly established, and their importance to other
theoretical work and to practice is widely recognized. Stimulated by technological
advances, theoreticians have been rapidly expanding the areas under study, and the
time delay between theoretical progress and its practical impact has been decreas-
ing dramatically. Much publicity has been given recently to breakthroughs in
cryptography and linear programming, and steady progress is being made on pro-
gramming language semantics, computational geometry, and efficient data struc-
tures. Newer, more speculative, areas of study include relational databases, VLSI
theory, and parallel and distributed computation. As this list of topics continues
expanding, it is becoming more and more difficult to stay abreast of the progress
that is being made and increasingly important that the most significant work be
distilled and communicated in a manner that will facilitate further research and
application of this work.

By publishing comprehensive books and specialized monographs on the
theoretical aspects of computer science, the series on Foundations of Computing
provides a forum in which important research topics can be presented in their
entirety and placed in perspective for researchers, students, and practitioners alike.
This volume, by Michael J. O’Donnell, presents an elegant and powerful interpre-
tive system for programming in terms of abstract logical equations. The language
is similar to Prolog, in that it is descriptive rather than procedural, but unlike Pro-
log its semantic description allows an efficient implementation that strictly adheres
to the given semantics. The presentation provides the definition of the language,
many examples of its use, and discussion of the relevant underlying theory. It is
essential reading for anyone interested in the latest ideas about nonprocedural pro-
gramming and practical programming language semantics.

Michael R. Garey

Preface

This book describes an ongoing equational programming project that started in
1975. Principal investigators on the project are Christoph Hoffmann and Michael
O’Donnell. Paul Chew, Paul Golick, Giovanni Sacco, and Robert Strandh partici-
pated as graduate students. I am responsible for the presentation at hand, and the
opinions expressed in it, but different portions of the work described involve each of
the people listed above. I use the pronoun "we" throughout the remainder, to indi-
cate unspecified subsets of that group. Specific contributions that can be attributed
to one individual are acknowledged by name, but much of the quality of the work
is due to untraceable interactions between several people, and should be credited to

the group.

The equational programming project never had a definite pseudocommercial
goal, although we always hoped to find genuinely useful applications. Rather than
seeking a style of computing to support a particular application, we took a clean,
simple, and elegant style of computing, with particularly elementary semantics, and
asked what it is good for. As a result, we adhered very strictly to the original con-
cept of computing with equations, even when certain extensions had obvious prag-
matic value. On the other hand, we were quite willing to change the application.
Originally, we envisioned equations as formal descriptions of interpreters for other
programming languages. When we discovered that such applications led to outra-
geous overhead, but that programs defined directly by equations ran quite competi-
tively with LISP, we switched application from interpreter generation to program-

ming with equations.

We do not apologize for our fanaticism about the foundations of equational

programming, and our cavalier attitude toward applications. We believe that good

Preface

mathematics is useful, but not always for the reasons that motivated its creation
(non-Euclidean geometry is a positive example, the calculus a negative one). Also,
while recognizing the need for programming languages that support important
applications immediately, we believe that scientific progress in the principles of pro-
gramming and programming languages is impeded by too quick a reach for appli-
cations. The utility of LISP, for example, is unquestionable, but the very adjust-
ments to LISP that give it success in many applications make it a very imprecise
vehicle for understanding the utility of declarative programming. We would rather
discover that pure equational programming, as we envision it, is unsuitable for a
particular application, than to expand the concept in a way that makes it harder to

trace the conceptual underpinnings of its success or failure.

Without committing to any particular type of application, we must experiment
with a variety of applications, else our approach to programming is pure specula-
tion. For this purpose, we need an implementation. The implementation must per-
form well enough that some people can be persuaded to use it. We interpret this
constraint to mean that it must compete in speed with LISP. Parsers, program-
ming support, and the other baggage possessed by all programming languages,
must be good enough not to get in the way, but the main effort should go toward
demonstrating the feasibility of the novel aspects, rather than solving well under-
stood problems once again.

The equational programming project has achieved an implementation of an
interpreter for equational programs. The implementation runs under Berkeley
UNIX* 4.1 and 4.2, and is available from the author for experimental use. The
current distribution is not well enough supported to qualify as a reliable tool for

*UNIX is a trademark of AT&T.

Preface

important applications, but we have hopes of producing such a stronger implemen-
tation in the next few years. Sections 1 through 10 constitute a user’s manual for
the current implementation. The remainder of the text covers a variety of topics
relating to the theory supporting equational programming, the algorithmic and
organizational problems solved in its implementation, and the special characteris-
tics of equational programming that qualify it for particular applications. Some
sections discuss work in progress. The intent is to give a solid intuition for all the
identifiable aspects of the project, from its esoteric theoretical foundations in logic
to its concrete implementation as a system of programs, and its potential applica-

tions.

Various portions of the work were supported by a Purdue University XL
grant, by the National Science Foundation under grants MCS-7801812 and MCS-
8217996, and by the National Security Agency under grant 84H0006. The Purdue
University Department of Computer Sciences provided essential computing
resources for most of the implementation effort. I am grateful to Robert Strandh
and Christoph Hoffmann for critical readings of the manuscript, and to AT&T
Bell Laboratories for providing phototypesetting facilities. Typesetting was accom-

plished using the troff program under UNIX.

EQUATIONAL LOGIC

as a

PROGRAMMING LANGUAGE

1. Introduction (adapted from HO82b)

Computer scientists have spent a large amount of research effort developing the
semantics of programming languages. Although we understand how to implement
Algol-style procedural programming languages efficiently, it seems to be very
difficult to say what the programs mean. The problem may come from choosing an
implementation of a language before giving the semantics that define correctness of
the implementation. In the development of the equation interpreter, we reversed
the process by taking clean, simple, intuitive semantics, and then looking for

correct, efficient implementations.

We suggest the following scenario as a good setting for the intuitive semantic
of computation. Our scenario covers many, but not all, applications of computing

(e.g., real-time applications are not included).

A person is communicating with a machine. The person gives a sequence of
assertions followed by a question. The machine responds with an answer or by

never answering.

The problem of semantics is to define, in a rigorous and understandable way, what
it means for the machine’s response to be correct. A natural informal definition of
correctness is that any answer that the machine gives must be a logical conse-
quence of the person’s assertions, and that failure to give an answer must mean
that there is no answer that follows logically from the assertions. If the language
for giving assertions is capable of describing all the computable functions, the
undecidability of the halting problem prevents the machine from always detecting
those cases where there is no answer. In such cases, thc machine never halts. The
style of semantics based on logical consequence leads most naturally to a style of

programming similar to that in the descriptive or applicative languages such as

2 1. Introduction

LISP, Lucid, Prolog, Hope, OBJ, SASL and Functional Programming languages,
although Algol-style programming may also be supported in such a way. Compu-
tations under logical-consequence semantics roughly correspond to "lazy evaluation"

of LISP [HM76, FWT6].

Semantics based on logical consequence is much simpler than many other
styles of programming language semantics. In particular, the understanding of
' logical-consequence semantics does not require construction of particular models
through lattice theory or category theory, as do the semantic treatments based on
the work of Scott and Strachey or those in the abstract-data-types literature using
initial or final algebras. If a program is given as a set of assertions, then the logi-
cal consequences of the program are merely all those additional assertions that
must be true whenever the assertions of the program are true. More precisely, an
equation A=B is a logical consequence of a set E of equations if and only if, in
every algebraic interpretation for which every equation in E is true, A=B is also
true (see [0’D77] Chapter 2 and Section 14 of this text for a more technical treat-
ment). There is no way to determine which one of the many models of the pro-
gram assertions was really intended by the programmer: we simply compute for
him all the information we possibly can from what we are given. For those who
prefer to think of a single model, term algebras or initial algebras may be used to
construct one model for which the true equations are precisely the logical conse-

quences of a given set of equations.

We use the language of equational logic to write the assertions of a program.
Other logical languages are available, such as the first-order predicate calculus,
used in Prolog [Ko79a]. We have chosen to emphasize the reconciliation of strict

adherence to logical consequences with good run-time performance, at the expense

1. Introduction 3

of generality of the language. Current implementations of Prolog do not always
discover all of the logical consequences of a program, and may waste much time
searching through irrelevant derivations. With our language of equations, we lose
some of the expressive power of Prolog, but we always discover all of the logical
consequences of a program, and avoid searching irrelevant ones except in cases that
inherently require parallel computation. Hoffmann and O’Donnell survey the
issues involved in computing with equations in [HO82b]. Section 17 discusses the

question of relevant vs. irrelevant consequences of equations more specifically.
Specializing our computing scenario to equational languages:

The person gives a sequence of equations followed by a question, "What is E?"
for some expression E. The machine responds with an equation "E=F," where

F is a simple expression.

For our equation interpreter, the "simple expressions” above must be the normal
forms: expressions containing no instance of a left-hand side of an equation. This
assumption allows the equations to be used as rewriting rules, directing the replace-
ment of instances of left-hand sides by the corresponding right-hand sides. Sec-
tions 2 and 3 explain how to use the equation interpreter to act out the scenario
above. Our equational computing scenario is a special case of a similar scenario
developed independently by the philosophers Belnap and Steel for a logic of ques-

tions and answers [BS761].

The equation interpreter ‘accepts equations as input, and automatically pro-
duces a program to perform the computations described by the equations. In order
to achieve reasonable efficiency, we impose some fairly liberal restrictions on the
form of equations given. Section 5 describes these restrictions, and Sections 6-8

and 10 present features of the interpreter. Section 15 describes the computational

4 1. Introduction

power of the interpreter in terms of the procedural concepts of parallelism, non-
determinism, and pipelining.
Typical applications for which the equation interpreter should be useful are:

1. We may write quick and easy programs for the sorts of arithmetic and list-
manipulating functions that are commonly programmed in languages such as
LISP. The "lazy evaluation" implied by logical-consequence semantics allows
us to describe infinite objects in such a program, as long as only finite portions
are actually used in the output. The advantages of this capability, discussed
in [FW76, HM76], are similar to the advantages of pipelining between corou-
tines in a procedural language. Definitions of large or infinite objects may
also be used to implement a kind of automatic dynamic programming (see
Section 15.4).

2. We may define programming languages by equations, and the equation proces-
sor will produce interpreters. Thus, we may experiment with the design of a
programming language before investing the substantial effort required to pro-

duce a compiler or even a hand-coded interpreter.

3. Equations describing abstract data types may be used to produce correct
implementations automatically, as suggested by -[GS78, Wa76], and imple-
mented independently in the OBJ language [FGIM85].

4, Theorems of the form A=B may sometimes be proved by receiving the same
answer to the questions "What is A?" and "What is B?" [KB70, HO88] dis-
cuss such theorem provers. REVE [Le83, FG84] is a system for developing

theorem-proving applications of equations.

1. Introduction 5

5. Non-context-free syntactic checking, and semantics, such as compiler code-
generation, may be described formally by equations and used, along with the
conventional formal parsers, to automatically produce compilers (see Section

13).

The equation interpreter is intended for use by two different classes of user, in
somewhat different styles. The first sort of user is interested in computing results
for direct human consumption, using well-established facilities. This sort of user
should stay fairly close to the paradigm presented in Section 2, should take the
syntactic descriptions as fixed descriptions of a programming language, and should
skip Section 20, as well as other sections that do not relate to the problem at hand.
The second sort of user is building a new computing product, that will itself be
uscd directly or indirectly to produce humanly readable results. This sort of user
will almost certainly need to modify or redesign some of the syntactic processors,
and will need to read Sections 13 and 20 rather closely in order to understand how
to combine equationally-produced interpreters with other sorts of programs. The
second sort of user is encouraged to think of the equation interpreter as a tool,
analogous to a formal parser constructor, for building whichever parts of his pro-
duct are conveniently described by equations. These equational programs may then
be combined with programs produced by other language processors to perform
those tasks not conveniently implemented by equations. The aim in using equations
should be to achieve the same sort of self-documentation and ease of modification
that may be achieved by formal grammars, in solving problems where context-free

manipulations are not sufficiently powerful.

2. Using the Equation Interpreter Under UNIX (ep and ei)

Use of the equation interpreter involves two separate steps: preprocessing and
interpreting. The preprocessing step, like a programming language compiler,
analyzes the given equations and produces machine code. The interpreting step,
which may be run any number of times once preprocessing is done, reduces a given
_term to normal form.

Normal use of the equation interpreter requires the user to create a directory

containing 4 files used by the interpreter. The 4 files to be created are:

1. definitions - containing the equations;

2. prein - an input parser for the preprocessor;

3. intin - an input parser for the interpreter;

4, int.out - an output pretty-printer for the interpreter.

The file definitions, discussed in Section 3, is usually typed in literally by the user.
The files pre.in, int.in and int.out, which must be executable, are usually produced
automatically by the command loadsyntax, as discussed in Section 4.

To invoke the preprocessor, type the following command to the shell
ep Equnsdir

where Equnsdir is the directory in which you have created the 4 files above. If no
directory is given, the current directory is used. Ep will use Equnsdir as the home
for several temporary files, and produce in Equnsdir an executable file named
interpreter. Because of the creation and removal of temporary files, the user should
avoid placing any extraneous files in Equnsdir. Two of the files produced by ep
are not removed: def.deep and def.in. These files are not strictly necessary for

operation of the interpreter, and may be removed in the interest of space

2. Using the Equation Interpreter 7

conservation, but they are useful in building up complex definitions from simpler
ones (Section 14) and in producing certain diagnostic output (Section 10). To

invoke the interpreter, type the command:

ei Equnsdir

A term found on standard input will be reduced, and its normal form placed on the

standard output.
A paradigmatic session with the equation interpreter has the following form:

mkdir Equnsdir

loadsyntax Equnsdir

edit Equnsdir/definitions using your favorite editor

ep Equnsdir

edit input using your favorite editor

ei Equnsdir <input
The sophisticated user of UNIX may invoke ei from his favorite interactive editor,
such as ned or emacs, in order to be able to simultaneously manipulate the input

and output.

In more advanced applications, if several equation interpreters are run in a
pipeline, repeated invocation of the syntactic processors may be avoided by invok-
ing the interpreters directly, instead of using ei. For example, if Equ.1, Equ.2,
Equ.3 are all directories in which equational interpreters have been compiled, the

following command pipes standard input through all three interpreters:

Equ.1fint.in | Equ.1/interpreter | Equ.2finterpreter |
Equ.3linterpreter | Equ.3fint.out;

Use of ei for the same purpose would involve 4 extra invocations of syntactic pro-
cessors, introducing wasted computation and, worse, the possibility that superficial

aspects of the syntax, such as quoting conventions, may affect the results. If

8 2. Using the Equation Interpreter

Equ.\, Equ.2, and Equ.3 are not all produced using the same syntax, careful con-
sideration of the relationship between the different syntaxes will be needed to make

sense of such a pipe.

After specifying the directory containing definitions, the user may give the size

of the workspace to be used in the interpreter. This size defaults to 215—1-32767:
the largest that can be addressed in one 16-bit word with a sign bit. The

' workspace size limits the size of the largest expression occurring as an intermediate
step in any reduction of an input to normal form. The effect of the limit is blurred
somewhat by sharing of equivalent subexpressions, and by allocation of space for
declared symbols even when they do not actually take part in a particular computa-

tion. For example, to reduce the interpreter workspace to half of the default, type

ep Equnsdir 16384

The largest workspace wusable in the current implementation is
231—2=2147483646. The limiting factor is the Berkeley Pascal compiler, which
will not process a constant bigger than 231—l=2147483647, and which produces
mysteriously incorrect assembly code for an allocation of exactly that much. On
current VAX Unix implementations, the shell may often refuse to run sizes much

larger than the default because of insufficient main memory. In such a case, the

user will see a message from the shell saying "not enough core” or "too big".

3. Presenting Equations to the Equation Interpreter

Input to the equation interpreter, stored in the file definitions, must be of the fol-
lowing form:
Symbols

symbol_descriptor;
symbol_descriptor,;

symbol_descriptor,,.
For all variable, variable,, - - - variable,:

equation;
equation,;

equation,,.

The principal keywords recognized by the preprocessor are Symbols, For all, and
Equations, appearing at the beginning of a line. Equations is an alternative to
For all used in the unusual case that there are no variables in the equations. Cap-
italization of these keywords is optional, and any number of blanks greater than 0
may appear between For and all. The only other standard keywords are include,
where, end where, is, are, in, either, or, and end or. The special symbols used by
the preprocessor are "", ", ".", "", """, and "". Particular term syntaxes (see Sec-
tion 4) may entail other keywords and special symbols. Blanks are required only
where necessary to separate alphanumeric strings. Any line beginning with ""is a

comment, with no impact on the meaning of a specification.

symbol_descriptors indicate one or more symbols in the language to be

3. Presenting Equations

defined, and give their arities. Intuitively, symbols of arity O are the constants of
the language, and symbols of higher arity are the operators. A symbol_descriptor

is either of the form

symbol |, symbol,, ... symbol,,,: arity m21
or of the form

include symbol_class, ... symbol_class, n>1
Syntactically, symbols and symbol_classes are identifiers: strings other than key-
words beginning with an alphabetic symbol followed by any combination of alpha-
betic symbols, base-ten digits, " ", and "-". Identifiers are currently limited to 20
characters, a restriction which will be removed in future versions. A symbol_class
indicates the inclusion of a large predefined class of symbols. These classes are dis-

cussed in Section 6. Symbols that have been explicitly declared in the Symbols

section are called literal symbols, to distinguish them from members of the

predefined classes.

variables are identifiers, of the same sort as symbols. An equation is either of

the form

termy = term,
of the form

term, = term, where qualification
or of the form

include equation_class, - - ,equation_class,,

3. Presenting Equations 11

The syntax of terms is somewhat flexible, and is discussed in Section 4.
qualifications are syntactic constraints on substitutions for variables, and are dis-
cussed in Section 8. equation_classes are identifiers indicating the inclusion of a
large number of predefined equations. These classes are discussed in Section 7.

For larger problems, the notation presented in this section will surely not be
satisfactory, because it provides no formal mechanism for giving structure to a
large definition. Section 14 describes a set of operators that may be applied to one
or more equational definitions to produce useful extensions, modifications, and com-
binations of the definitions. The idea for these definition-constructing operators
comes from work on abstract data types by Burstall and Goguen, implemented in
the language OBJ [BG77]. Users are strongly encouraged to start using these
operators as soon as a definition begins to be annoyingly large. The current version
does not implement operators on definitions, so most users will not want to attack

large problems until a more advanced version is released.

The syntax presented in this section is collected in the BNF below.
<program> ::= Symbols <symbol descriptor list>.
For all <variable list >:<equation list>.
<symbol descriptor list> ::= <symbol descriptor>;. ..; <symbol descriptor >

<symbol descriptor> = <symbol list >:<arity> |

include <symbol class list>
<symbol class list> ::= <symbol class>, ..., <symbol class>

<symbol class> ::= atomic_symbols | integer_numerals | truth_values

12 3. Presenting Equations

<symbol list> = <symbol>, ..., <symbol >
<symbol> = <identifier >

<arity> = <number>

<variable list> = <variable>, ..., <variable>

. <variable> := <identifier >

<equation list> = <equation>; . . .; <equation>

<equation> = <term> = <term> |

<term> = <term> where <qualification> end where |

include <equation class list>
<gqualification> = <qualification item list>
<qualification item list> := <qualification item>, . . . ,<qualification item>

<qualification item> ::= <variable> is <qualified term> |

<variable list> are <qualified term>

<qualified term> ::= in<symbol class> |
<term> |
<qualified term> where <qualification> end where |

either <qualified term list> end or

<qualified term list> = <qualified term>or . . . or <qualified term>

4. The Syntax of Terms (Joadsyntax)

Since no single syntax for terms is acceptable for all applications of the equation
interpreter, we provide a library of syntaxes from which the user may choose the
one best suited to his application. The more sophisticated user, who wishes to
custom-build his own syntax, should see Section 20 on implementation to learn the

requirements for parsers and pretty-printers.
To choose a syntax from the current library, type the command

loadsyntax Equnsdir Syntax

where Equnsdir is the directory containing the preprocessor input, and Syntax is
the name of the syntax to be seen by the user. Loadsyntax will create the
appropriate pre.in, int.in, and int.out files in Equnsdir to process the selected syn-
tax. If syntax is omitted, LISP.M is used by default. If Equnsdir is also omitted,

the current directory is used.

In order to distinguish atomic symbols from nullary literal symbols in input to
the interpreter, the literal symbols must be written with an empty argument list.
Thus, in Standmath notation, a() is a literal symbol, and a is an atomic symbol.
In LISP.M, the corresponding notations are al] and a. This regrettable notational

clumsiness should disappear in later versions.

4.1 Standmath: Standard Mathematical Notation

The Standmath syntax is standard mathematical functional prefix notation, with
arguments surrounded by parentheses and separated by commas, such as
f(g(a,b),c,h(e)). Empty argument lists are allowed, as in fO. This syntax is
used as the standard of reference (but is not the default choice), all others are

described as special notations for Standmath terms.

4. Syntax of Terms

4.2 LISP.M: Extended LISP Notation

LISP.M is a liberal LISP notation, which mixes M-expression notation freely with
S-expressions [McC60). Invocation of LISP.M requires declaration of the nullary
symbol nil and the binary symbol cons. An M-expression accepted by LISP.M
may be in any of the following forms:

atomic_symbol

nil()

(M—expry M—expry - - - M—expr,,) m20
(M—expry M—expry - -+ M—expr,_; . M—expr,) n>1
SunctionlM—expry; M—expry ; « - - M—expr,) p=0

(M—expry -+ M—expr,_, . M—expr,)

is a notation for

cons (M—expry, - -+ cons(M—expr,_,, M—expr,) -+)

(M—expry -+ M—expr,,)

is a notation for

cons (M—expr,, cons (M—expry, -+ cons(M—expr,,, nil0) -+))
JSunction[M—expry; - - - M—expr,]

is a notation for

Junction(M—expry, - - M—expr,)

4.3, Lambda 15

4.3 Lambda: A Lambda Calculus Notation

Lambda notation is intended for use in experiments with evaluation strategies for
the lambda calculus. This notation supports the most common abbreviations con-
veniently, while allowing unusual sorts of expressions to be described at the cost of
less convenient notation. Because of the highly experimental nature of this syntax,
less attention has been given to providing useful error messages. Since this lambda
notation was developed to support one particular series of experiments with reduc-

tion strategies, it will probably not be suitable for all uses of the lambda calculus.

\x.E

is a notation for

Lambda(cons(x, nil()), E)

where x must be an atomic symbol representing a variable.

(EF)

is a notation for

AP(E, F)

In principle, the notations above are sufficient for describing arbitrary lambda
terms, but for convenience, multiple left-associated applications may be given with

only one parenthesis pair. Thus,

(E1E2E3 LR E”) n>2

16 4. Syntax of Terms

is a notation for

AP(-+ AP(AP(E,, Ep,E4), -+ E,;)

Similarly, many variables may be lambda bound by a single use of "\". Thus,

\x; x3 00 xp.E n2l

is a notation for

Lambda (cons (x,, cons (xy, -+ nilQ) -+),E)

Notice that the list of variables is given as a LISP list, rather than the more con-

ventional representation as

Lambda(x,, Lambda(x,, -+ - Lambda(x,, E) ---))

It is easy to write equations to translate the listed-variable form into the more con-
ventional representation, but the listed form allows reduction strategies to take
advantage of nested Lambdas. In order to write equations manipulating lists of

variables, it is necessary to refer to a list of unknown length. So,

\x; x5 -+ x,rem.E n2>0

is a notation for

Lambda (cons (x,, cons (x5, -+ rem) ---), E)

That is, rem above represents the remainder of the list beyond x; - - - x,,. In the

special case where n=0,

4.3. Lambda 17

\:list.E

is a notation for

Lambdal(list, E)

In order to deal with special internal forms, such as de Bruijn notation [deB72],

the form

\:i.E

is allowed as a notation for

Lambda(i, E)

where i is an integer numeral. If function symbols other than Lambda and AP
must be introduced, a bracketed style of function application may be used, in

which

SlE|, -+ E,] n=0

is a notation for

f(El’ rime En)

4.4 Inner Syntaxes (for the advanced user with a large problem)
Independently of the surface syntax in which terms are written, it may be helpful
to use different internal representations of terms for different purposes. For exam-

ple, instead of having a number of function symbols of different arities, it is some-

18 4. Syntax of Terms

times convenient to use only one binary symbol, AP, representing function applica-
tion, and to represent all other functions by nullary symbols. Application of a
function to multiple arguments is represented by a sequence of separate applica-
tions, one for each argument. The translation from standard notation to this appli-

cative notation is often called Currying. For example, the term

(g(a, b), h(e)

is Curried to

AP(AP(f, AP(AP(g, a), b), AP(h, c))).

Since the performance of the pattern-matching techniques used by the equation
interpreter is affected by the internal representation of the patterns, it may be
important to choose the best such representation in order to solve large problems.
The current version of the system is not particularly sensitive to such choices, but
earlier versions were, and later versions may again be so. In order to use an alter-

nate internal representation, type

loadsyntax Equnsdir Outersynt Innersynt

where Outersynt is one of the syntaxes described in Sections 4.1-4.3, and Innersynt
is the name of the chosen internal representation. Currently, only two internal
representations are available. Standmath is the standard mathematical notation,

so

loadsyntax Equnsdir Outersynt Standmath

4.4. Inner Syntaxes

is equivalent to

loadsyntax Equnsdir Outersynt

The other internal representation is Curry, described above.

19

5. Restrictions on Equations

In order for the reduction strategies used by the equation interpreter to be correct
according to the logical-consequence semantics, some restrictions must be placed on
the equations. The user may learn these restrictions by study, or by trial and error,
since the preprocessor gives messages about each violation. Presently, 5 restrictions

are enforced:

1. No variable may be repeated on the left side of an equation. For instance,
ifx,y.p) =y

is prohibited, because of the 2 instances of y on the left side.

2. Every variable appearing on the right side of an equation must also appear on

the left. For instance, f (x)=y is prohibited.

3. Two different left sides may not match the same expression. So the pair of

equations

gl0x) =0; glxl) =0

is prohibited, because both of them apply to g (0,1).

4. When two (not necessarily different) left-hand sides match two different parts
of the same expression, the two parts must not overlap. E.g., the pair of equa-

tions
first(pred(x)) = predfunc; pred(succ(x)) = x

is prohibited, since the left-hand sides overlap in first (pred (succ (0)).
5. It must be possible, in a left-to-right preorder traversal of any term, to iden-
tify an instance of a left-hand side without traversing any part of the term

below that instance. This property is called left-sequentiality. For example,

5. Restrictions on Equations 21

the pair of equations
flglx,a),y) =0; gb,c) =1

is prohibited, since after scanning f (g it is impossible to decide whether to
look at the first argument to g in hopes of matching the & in the second equa-

tion, or to skip it and try to match the first equation.

Violations of left-sequentiality may often be avoided by reordering the argu-
ments to a function. For example, the disallowed equations above could be
replaced by f(g(a,x),y) =0 and g(c,b) = 1. Left-sequentiality does not neces-
sarily imply that leftmost-outermost evaluation will work. Rather, it means that in
attempting to create a redex at some point in a term, the evaluator can determine
whether or not to perform reductions within a leftward portion of the term without
looking at anything to the right. Left-sequentiality is discussed in more detail in

Sections 17 and 18.3.

All five of these restrictions are enforced by the preprocessor. Violations pro-
duce diagnostic messages and prevent compiling of an interpreter. The left-
sequentiality restriction (5) subsumes the nonoverlapping restriction (4), but later
versions of the system will remove the sequentiality constraint. Later versions will
also relax restriction (3) to allow compatible left-hand sides when the right-hand

sides agree.

6. Predefined Classes of Symbols

It is sometimes impossible to list in advance all of the symbols to be processed by a
particular set of equations. Therefore, we allow 4 predefined classes of symbols to
be invoked by name. These classes consist entirely of constants, that is, nullary

symbols.

- 6.1. integer_numerals
The integer_numerals include all of the sequences of base-10 digits, optionally pre-
ceded by "". Numerals are limited to fit in a single machine word: the range
2147483647 to +2147483647 on the current VAX implementation. Later versions
will use the operators of Section 14 to provide arbitrary precision integer arith-

metic.

6.2. truth_values

The truth_values are the symbols true and false. They are included as a

predefined class for standardization.

6.3. characters

The characters are ASCII characters, presented in single or double
quotes. The only operations available are conversions between characters
and integer_numerals. Later versions will use the operators of Section 14 to pro-
vide arbitrarily long character strings, and some useful string-manipulating opera-

tions.

6.4. atomic_symbols

The atomic_symbols are structureless symbols whose only detectable relations are

equality and inequality. Every identifier different from true and false, and not

6. Predefined Classes of Symbols 23

having any arguments, is taken to be an atomic symbol. In order to distinguish
nullary literal symbols from atomic symbols, the literal symbols are given null
strings of arguments, such as /it() (in Standmath notation) and lit[] (in LISP.M
notation). Currently, atomic_symbols are limited to lengths from 0 to 20. Later
versions will use the operators of Section 14 to provide arbitrarily long
atomic_symbols.

Section 7 describes predefined functions which operate on these classes of sym-

bols.

7. Predefined Classes of Equations

The predefined classes of equations described in this section were introduced to
provide access to selected machine instructions, particularly those for arithmetic
operations, without sacrificing the semantic simplicity of the equation interpreter,
and without introducing any new types of failure, such as arithmetic overflow.
Only those operations that are extremely common and whose implementations in
‘machine instructions bring substantial performance benefits are included. The
intent is to provide a minimal set of predefined operations from which more power-
ful operations may be defined by explicitly-given equations. So, every predefined
operation described below has the same effect as a certain impractically large set of
equations, and the very desirable extensions of these sets of equations to handle
multiple-word objects are left to be done by explicitly-given equations in later ver-
sions.

For each predefined class of symbols, there are predefined classes of equations
defining standard functions for those symbols. Some of the functions produce
values in another class than the the class of the arguments. Predefined classes of
equations allow a user to specify a prohibitively large set of equations concisely,
and allow the implementation to use special, more efficient techniques to process
those equations than are used in general. When a predefined class of functions is
invoked, all of the relevant function symbols and classes of symbols must be
declared as well. We will describe the functions defined for each class of symbols.
The associated class of equations is the complete graph of the function. For exam-
ple, the integer function add has the class of equations containing add (0,0)=0,

add (0,1)=1, ... add (1,0)=1, add (1,1)=2,

7.1 Functions on atomic_symbols 25

7.1. Functions on atomic_symbols

equatom equ(x,y) = true if x=y,

false otherwise

7.2. Integer Functions

multint multiply(x,y) = x * y

divint divide(x,y) = the greatest integer <x/[y if y#0

modint modulo(x,y) = x — (yxdivide (x,y)) if y =0,
x otherwise

addint add(x,y) =x +y

subint subtract(x,y) =x — y

equint equlx,y) = true if x=y,

false otherwise

lessint less(x,y) = true if x<y,

false otherwise

An expression starting with the function divide will not be reduced at all if the
second argument is 0. Thus, the output will give full information about the
erroneous use of this function. Similarly, additions and multiplications leading to
overflow will simply not be performed. Later versions will perform arbitrary preci-

sion arithmetic (see Section 9.6), removing this restriction.

7.3. Character Functions

equchar equ(x,y) = true if x=y,

false otherwise

26 7. Predefined Classes of Equations

intchar char(i) = the ith character in a standard ordering

charint seqno(x) = the position of x in a standard ordering

An application of char to an integer outside of the range 0 to 27 — 1 = 127, or an
application of segno to a string of length other than 1 will not be reduced. Later
versions will use the operations of Section 14 to provide useful string-manipulating

operations for arbitrarily long character strings,

8. Syntactic Qualifications on Variables

Even with a liberal set of predefined functions, there will arise cases where the set
of equations that a user wants to include in his definition is much too large to ever
type by hand. For example, in defining a LISP interpreter, it is important to define
the function atom, which tests for atomic symbols. The natural set of equations to
define this function includes atom(cons (x,y))=false, atom(a)=true,
atom (b)=true, ... atom(aa)=true, atom(ab)=true, We would like to abbre-
viate this large set of equations with the following two:

atom(cons(x,y)) = false;

atom(x) = true where x is either

in atomic_symbols
or in integer_numerals

end or
end where

Notice that the qualification placed on the variable x is essentially a syntactic,

rather than a semantic, one. In general, we allow equations of the form:

term = term where qualification end where
A qualification is of the form

qualification_item, -+ - qualification_item,, m21
and qualification_items are of the forms

variable is qualification_term

variable,, - - - variable, are qualification_term

and qualification_terms are of the forms

in predefined_symbol_class

28 8. Syntactic Qualifications

term
qualification_term where qualification end where

either qualification_termy or * - - qualification_term, end or

Examples illustrating the forms above:
atompair_or_atom(x) = true
where x is either
cons(y,z) where y,z are in atomic_symbols end where
or in atomic_symbols
end where;
atom _int_pair(x) = true
where X is cons(y,z)
where y is in atomic_symbols,
X is in integer_numerals
end where
end where

If the same variable is mentioned in two different nested qualifications, the inner-

most qualification applies.

The interpretation of the restrictions on equations in Section 5 is not obvious
in the presence of qualified equations. Restrictions 1 and 2, regarding the appear-
ance of variables on left and right sides of equations, are applied to the unqualified
equations, ignoring the qualifying clauses. Restrictions 4 and 5, regarding possible
interactions between left sides, are applied to the results of substituting variable
qualifications for the instances of variables that they qualify. For example, the

equation

S(x) =y where x is g(y) end where

is prohibited, because the variable y is not present on the unqualified left side, and

the pair of equations

8. Syntactic Qualifications 29

S(x) = 0 where x is g(y) end where; g(x) = I;

is prohibited because of the overlap in f (g(a)). In general, a variable occurring in
a where clause is local to that clause, so g (x,p) = z where x is y is equivalent to
g(x,p) = z, rather than g(x,x) = z. The details of interactions between variable
bindings and where clauses certainly need more thought, but fortunately the subtle

cases do not occur very often.

9. Miscellaneous Examples

This section contains examples of complete equational programs that do not fit any
specific topic, but help give a general feeling for the capabilities of the interpreter.
The first ones are primitive, and should be accessible to every reader, but later
ones, such as the lambda—calculus example, are intended only for the reader

whose specialized interests agree with the topic.

9.1. List Reversal
The following example, using the LISP.M syntax, is chosen for its triviality. The
operation of reversal (rev) is defined using the operation of adding an element to
the end of a list (addend). A trace of this example shows that the number of steps
to reverse a list of length # is proportional to #2. Notice that the usual LISP opera-
tors car and cdr (first element, remaining elements of a list) are not needed,
because of the ability to nest operation symbols on the left-hand sides of equations.
This example has no advantage over the corresponding LISP program, other than
transparency of notation. It is easy to imagine a compiler that would translate
equational programs of this sort into LISP in a very straightforward way.
Symbols
: List constructors

cons: 2;

nil: 0;
: Operators for list manipulation

rev: 1;

addend: 2;

include atomic_symbols.

For all x,y,z:

revlQ] = ();
revl(x . y)l = addendlrevlyl; xJ;

9.1. List Reversal 31

addend[(); x] = (x);
addend[(x . y); z] = (x . addendly; z]).

The following equations redefine list reversal in such a way that the equation
interpreter will perform a linear-time algorithm. Just like the naive quadratic time
version above, these equations may be compiled into a LISP program in a very
straightforward way.

Symbols

cons: 2;

nil: 0;

rev: 1;

apprev: 2;

include atomic_symbols.
For all x,y,z:

revix] = apprevilx; Ol

: apprevix; z] is the result of appending z to the reversal of x.
apprevl(; z] = z;
apprevl(x . y); z] = apprevly; (x . z)].

9.2. Huffman Codes

The following definition of an operator producing Huffman codes [Hu52, AHU83]
as binary trees is a little bit clumsier than the list reversals above to translate into
LISP, since the operator Huff, a new constructor combining a partially-constructed
Huffman tree with its weight, would either be omitted in a representing S-
expression, or encoded as an atomic symbol. Either way, the list constructing
operator is overloaded with two different intuitive meanings, and the expressions

become a bit harder to read.

32 9. Miscellaneous Examples

The following equations produce Huffman codes in the form of binary trees
constructed with cons.